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SUMMARY

A method for the theoretical determination of the lifetime of com-
pressed plates at elevated temperatures is presented. In this approach,
linearized equations are used throughout with the assumption that the
plate material is a standard linear solid. The critical time (lifetime)
is determined by reducing the time-dependent behavior to the time-
independent response of purely elastic buckling.

Theoretically predicted lifetimes of 2024-T3 (formerly 24S-T3)
aluminum-alloy plates at 450° F are compared with experimental values
obtained in previous work.

INTRODUCTION

With the increase of flight speeds, it becomes more and more impor-
tant to investigate extensively the behavior of compressed load-carrying
structural components such as columns and plates. At high speeds one
of the effects of aerodynamic heating consistes in changing the properties
of many structural materials from elastic to viscoelastic. Accordingly,
numerocus papers dealing with the problem of such time-dependent be-
havior, particularly creep bending and buckling, appeared during the
last decade. A review of these and related questions was presented re-
cently by Hoff (ref. 1) and Shanley (yef. 2).

As has been repeatedly observed (refs. 1 and 2), one of the essential
features of such time-dependent response is the existence of a critical
time at which the structure fails under constant compressive loads. A
variety of viewpolnts may be adopted to determine analytically this criti-
cal time. For example, expressions for the deflection of a compressed
element can be found, and the critical time can be defined as the time
at which this deflection becomes infinite. Since in this case the use
of a nonlinear stress-strain relation (or creep law) is required and since
the experimental creep curve for metals is nonlinear, the use of nonlinear
stress-strain relations possibly may be required in order to determine
analytically any critical time.
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Another approach could consist in assuming an initial imperfection
that would increase in time. The critical time (or lifetime) could then
be defined, still with a linear stress-strain relation, as the time at
which a certain allowable quantity (such as stress, strain, or deflection)
is reached.

8till another point of view is adopted in the present study. It is
assumed that the plate is perfectly flat and that the constant compres-
sive stresses will cause time-dependent decrease of Young's (or shear)
modulus, which in turn is proportional to the flexural rigidity. This
decrease is determined by developing the plate equations on the basis of
stress-strain relations derived from spring-dashpot models. The critical
time is defined as the instant at which the flexural rigidity reaches a
value that would make a corresponding elastic plate unstable under the
given loading.

This approach resembles somewhat the use of the secant modulus in
the analysis of plastic buckling and is difficult to justify on purely
theoretical grounds. The main advantage is that it conceptually reduces
the time-dependent behavior to a purely elastic, time-independent response
without introducing any new buckling or failure criteria. Therefore, a
high degree of idealization is embodied, and the physical reasonableness
can be tested only by comparison with experimental results; but its merits
for the aircraft structural engineer are obvious.

Another feature of the present approach, which contrasts it to the
other metheds, consists in the fact that no initial imperfections have %o
be assumed. This is of some significance, since experimental results
(ref. 3) show that initial deviations from flatness do not influence
appreciably the lifetime of compressed plates.

The basic equations governing the behavior of viscoelastic plates
in compression are derived and discussed in the first section of this
report. The second section establishes the expressions relating the
applied compressive force to the lifetime of the plate.

In the third and last section a quantitative comparison of the theo-
retical predictions and experimental results is carried out. The material
constants necessary for such a comparison were extracted from a completely
different source (ref. 4) than that giving the experimental results of
the lifetime of plates (ref. 3).

Because of the scarcity of information on material properties and
lifetimes and because of the large scatter to be expected in such experi-
ments, this first quantitative comparison, which gives the correct order
of magnitude and the correct dependence on the parameters, may be con-
sidered as promising.



This investigation was carried out at Columbia University under the
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SYMBOLS
edge lengths of plate
elastic flexural rigidity of plate
upper and lower flexural rigldity of plate, respectively
Young's modulus
uniform edge thrust per unit length of plate
elastic critical load
upper and lower critical load, respectively
shear modulus
plate thickness
bulk modulus
numerical factor, buckling value

plate moments defined by equation (2)

linear differentlal operators

time

lifetime (critical time)

deflection of plate

rectangular Cartesian coordinates
Poisson's ratio

strain deviator

strain components

coefficient of viscosity introduced in figure 2(b)



H1,H2 moduli of rigidity introduced in figure 2(b)
oF ] stress deviator

Oxs0y,0z,Txy  stress components

Te time of relaxation .of stress under constant strain
Tg time of relaxation of strain under constant stress
Subscripts:

cr critical

e elastic plate

h upper

1 lower

T relaxed (modulus)

u unrelaxed (modulus)

BASTC EQUATIONS

A flat, rectangular plate with edge lengths a and b and thickness
h is referred to the system of coordinates shown in figure 1 and is
loaded along the edges x = 0,a by a uniformly distributed (compressive)
force per unit length F. All four edges are simply supported.

The stress equation of equilibrium in the transverse direction z
is (e.g., see ref. 5)

32 > L 2
il P> L2 p OV (1)
3x2 ox oy dy° 3x2

where the moments are defined in the usual way:
n/2 h/2 h/2
M, = 0yz dz; M, = oyz dz; M, = Tyy? dz (2)

-n/2 -h/2 -h/2



and w is the deflection. In the present linearized analysis, the
force F 1is not related to w. To express equilibrium (eq. (1)) in
terms of one single unknown (deflection w), the stress-strain relations
of the material and the geometrical strain-displacement relations have
to be specified.

In establishing the relations between the moments My, My, Mxy

and the deflection w, assume that the plate material is linearly visco-
elastic. In the absence of volume viscosity, the stress-strain relations
for such a material may be written down in the form (see ref. 8):

Pod = ZQed

(3)
E

UX+Oy+GZ=l__—§;-(5X+5y+EZ)

where o4 1s the stress deviator, €4 is the strain deviator, o, Oy,

and 0, are the normal components of stress, and ¢, ey, and €&, are

the elongations. The quantity E/S(l - 2v) is the bulk modulus K, and
P and Q are the linear differential operators in time:

> )
P=ao+al'a—t‘+...+am5—t—n;
> (4)
o} a3t
Q=Dbny+Db + . . «+ b, —
0 lst natn-/

The stress-strain relations (eq. (3)) involving normal stresses and
strains may be written out in scalar form as

. N
E P 2

PGX-[T—-—é-Vg-3Q e+2Qex
E P 2 ]

Po., [l—ZvS-SQ e+2Qey> (5)
E P 2 .|

Poz—[l_ZVg—gQ e + 2Q€;




By eliminating €

E P 4 2ZE P 2 E P
P(l-m%*EQ) 0X"(1-2v§+gq) 2Q°X+(1-2v3'

E P 4 2E P 2 E P
P(:L-z\;S*BQ) “y“(1-2v3+3Q>2Qey+<1-2»5'
The procedure is analogous to the treatment of the elongation

the stress component in case of elastic

a
Z
ref. 7).

By assuming, further, the stress-displacement

of the classical linear plate theory, namely

plate

€y = - Z éEE' E, = - Z QEH‘ = -z
x = 32 v T oy2 % T
and by noting that in shear
Plyy = @y

in the preceding set and neglecting Oy,

dew

9x Oy

(6)

7 and

materials (e.g., see

relations to be those

(7)

the moment-deflection relations can be found by combining equations (2),

(3), and (7):

E P, 4 W28 P, 2 32w [ E P 2 32,7)
P(l-zv'3'+3Q> ”'E<1-2v§+3Q> axz'ﬁ<1-2v§'iq) ZQS;—
E P 4 3 [ 2E 2 32y 13 E P 2 32
P<1-2v3+3Q>My _12<1—2v+39')2 'a_g'ﬁ(l_zvg‘gQ) ZQ'gx—
3 2
E P 4 2h E P 4 d%w
P(l-2v3+3Q)M><y 12 (1-2v§+§Q)Q&_§§ )

then the
obtained

P.S 3g4 _E
3+3)th»«+313(1_2V

_E
1 - 2v

equilibrium condition, equation (1) in terms of w only, is
by substituting relations (8) into equation (1):

(9)




To treat any particular initial-value problem, the specific form of
the operators P and @ has to be prescribed. In case of the so-called
four-parameter model (fig. 2(a)), which was discussed and applied, for
example, by Glauz and Lee (ref. 8), these operators are of the form

el ST E L
N1 Ho 12 t o dta
e (10)
Q = El é% + ﬂl'éig
ot J

where El’ URE Ez, and 7o are the four constants of the model.

Since in the case of a four-parameter model the operators P and
Q are of second order, considerable complications are introduced in
solving the equilibrium equation (29) together with the appropriate initial
conditions. Since, in the process considered presently, nc unloading
takes place, the omission of the element representing unrecoverable flow
(no in fig. 2(a)) appeared to be justified. The model was thus reduced

to a three-parameter one, as shown in figure 2(b). This model was dls-
cussed extensively by Zener (ref. 9) and is referred to as the one
characterizing a standard linear solid.

The operators P and @Q are now of first order:

> )

= I
P l+}.ll&

- 1,109
J

Several other quantities, defined in terms of the model constants
My, Hp, and 71 may be introduced for convenience and better physical

insight. In particular, it is useful to know the time-dependence of E
and v iIn terms of the shear modulus G. The quantity T, = n/ul is

the time of relaxation of stress under constant strain, T, = n/ul + ﬂ/H2

is the time of relaxation under constant stress, GT = Mo is the relaxed
shear modulus, and Gu = [y + Ko is the unrelaxed shear modulus. It

follows that

(12)
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By introducing E,; as the unrelaxed Young's modulus, E,. as the relaxed
Young's modulus, K, as the unrelaxed bulk modulus, and K. as the re-

laxed bulk modulus, the absence of volume viscosity requires that

K,=K.=K
But
w1 E(8) G(y) _ 1 Er G 1 B Gy (13)
~ 3 3G(t) - E(t) 3 3G. - E. 33G, - E,
Since (ref. 9)
E, = 2(1 +v) Gy (14)
then
3 1 1l - 2v
= - g = (15)
R R
Evidently
E.# 2(1+Vv) G,
since, from equation (13),
3E, G(t)
u
E(Y) = Ty e T E, (16)
Some authors (refs. 10 and 11) prefer to use the form
E(t) = 2 [1 +v(t)] G (17)
By comparison with equation (16), v (t) must be
(2 +5v) 6(t) - E
- (18)

(t) = (1 - 2v) G(t) + E,

It may be noted that, wnile v(0) = v, v(=) # 1/2 except for a Maxwell
model (“2 = O). Further, in the expression

o, + o0, + 0, =3Ke, +e, +¢e,) (19)

X ¥ y



2(1 + v)Gy
the value 3K may be conveniently replaced by —ri—j—ggy—, which is a

constant. The quantity v has here its initial wvalue.

Even though for a three-parameter model the operators P and Q
are of first order, equation (9) on the deflection w will be of second

order.

An attempt could be made to lower this order while the same baslc
model is still being considered for the stress-strain relations. This,
in fact, can be done by extending the elastic stress-strain relations for
a plate directly to the viscoelastic ones without ever considering, as
was done before, the three-dimensional stress-strain relations. The
physical significance of this latter procedure, as contrasted to the
previous one, will be discussed at the end of the next section.

In the present case of a three-parameter model, therefore,

2G )
G.+—Te g%) Oy = 7T _rv (% + T é%)(sx + vey)

1 : _ 1+ 7T a(e+a)> (20)
tTe 3t) Yy ST - v o 3t)\¢y T Vex
d 0
é_+ Te 5%) Txy = Gn (Li—rg 5¥> Txy
J
This leads to the equation
3 2G 2
h r 3 4 o o°W _
-l—Zl_v(l+TOE)VW+(l+T€E)FaX2—O (21)
or
3 2
S 28 g4y, pp O¥ L g (22)

12 1 - v dx°

which replaces equation (9) and is of the first order in time.

CONCEPT OF ELASTIC BUCKLING APPLIED TO VISCOELASTIC PILATES

The external force F 1s assumed to act in the form of a step func-
tion and keeps its constant value after the beginning of loading at a
time t = O.
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One of the features of the linearized elastic stability analysis is
that no relation is sought between the force F and the deflection w
(ref. 12 contains a careful and detailed analysis of the stability

phenomenon).

In the case of an elastic plate, the critical force F, 1s found
to be (ref. 12)

k (23)

where De is the flexural rigidity of the elastic plate

Geh
D, = HEEED) (24)

and G, is the shear modulus of the elastic plate; k 1is a numerical
factor, the buckling value, the magnitude of which depends on the ratio

a/b.

In the case of a viscoelastic plate characterlized by the three-
parameter model (fig. 3), the following statement can be made: Since the
plate is assumed to be perfectly flat, the constant force F produces
only constant compressive stresses. Further, at the instant of loading
the viscosity element is as yet ineffective, and the rigidity is governed
by the unrelaxed modulus G,. On the other hand, if the force F 1is

permitted to act for an infinitely long time, the spring #p becomes in-
effective and the rigidity is governed by the relaxed modulus Gs..

Thus an upper critical load F,, under which the plate buckles in-
stantaneously, and a lower critical load Fy, under which the plate buck-

les after an infinite time, may be defined. Hence, for any load F > Fy
the plate buckles instantaneously; for F < Fj; the plate never buckles;
and for F; < F < Fp the plate buckles after a finite period of time,

which may be referred to as the lifetime or critical time t,..

The expressions for Fh, Fl’ and t,,. may be determined readily.
To calculate F,, let P=1 and Q= G,, and obtain from equation (9)

_ Dhﬂz
F, =

" k (25)



where
G, b
Dy=sr ) (26)

To find Fd’ let P=1 and Q = Gr’ and obtain similarly

F, = Dy k (27)
A bz
where
2(1 + v)g,

3
(I~r—§;76; + 1{ G.h

1T [%(1 + V)G, (28)
3

D
(1-2v6, 7 *

To calculate the critical time t.r associated with a load F; < F < F,

proceed as follows: Since the (constant) force F produces constant
stresses in the perfectly flat plate, the stress-strain relation (eqs.
(20)) takes the form

T = G, (é + Ty g%) Y (29)

During the interval of time O < t < =, the shear modulus G(t) will
decrease from G, to Gpn. 8ince, at t= 0, T = G,v, then from equation

(29)
(t) G t/tg
Glt =_I' e (30)
Gy Gy t/Tg Gy
e +-G—-l
u

The load F as a function of critical time is therefore (again with the
use of eq. (9)):

2L+ v) + (1 - 2v) Eéﬁl

F(tcr) D(t b1 G!t!
_D(t) _ 2(1 - v) (31)
u




12

A plot of G(t)/Gu against a dimensionless time t/’tO is presented

in figure 3. Poisson's ratio was taken as Vv = 0.3. Ons curve is for
G./G, = 0.9 (low viscosity) and the other for G./G, = 0.1 (high

viscosity). Figure 4 shows a plot of F(t..)/F, against t/ty, again
for Gp/Gy = 0.9 and G./G, = 0.1.

With the simpler equation (22), the same relation (30) is obtained
for G(t)/Gu; but a different one is obtained for F(tcr)/Fh, namely

F§§) _ D%:R _ Géz) (32)

which now replaces equation (31). Thus, with the simpler equation (30),
the curve F(t)/F, is identical to G(t)/G,, whatever the value of

G./Gy -

It may be of interest to establlish the physical meaning of stress-
strain relations (20) as contrasted to stress-strain relations (3). A
consequence of the former is equation (31), while a consequence of the
latter is equation (32). Thus, in order to pass from equation (31) to
equation (32),

-

[?(1 +v) + (1 - 2v) Eéﬁl 2(1 - v)

=1 (33)

2(1 + v) + 4(1 - 2v) G(t)
G
u

Introducing into thls expression the bulk modulus K gives

k=30 . =)~ g%i . ;%7 Gy (34)

- 2y oo =

and solving for X gives

or

- (39)
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that is, the bulk modulus changes in proportion to the shear modulus.
Thus, while equations (3) express absence of volume viscosity

(K = constant), equations (20) describe a material with both volume and
shear viscosity.

COMPARISON OF THEORETICAL PREDICTIONS
AND EXPERIMENTAI RESULTS

In order to predict a numerical value for the critical time, three
material constants corresponding to the three elements of the model must
be known. These constants may be obtained from a creep test.

Figure 5 shows an approximate reproduction of a curve from reference
3, which gives the total deformation in percent against time in hours
for a 2024-T3 aluminum sheet at 450° F subjected to a compressive constant
stress of 26,000 pounds per square inch. From this plot the unrelaxed

Young's modulus E, 1is readily obtained by dividing the stress by the

instantaneous strain:

= 26,000 _ 4 50x108 psi (37)

U 41073

If the plot is extrapolated by assuming that the total deformation will
reach 1.6 percent for very large times, the relaxed Young's modulus is

obtained:

£ _ 26,000

5 = 1.60%10° psi (28)
T 1.6x107

When Poisson's ratio v 1s 0.3, the unrelaxed shear modulus G 1is
calculated to be

Ey

= = 6 pai
G, = m = 2.5%x10~ psi (39)

The reciprocal of the relaxed shear modulus G, by formula (15), is

3 - Ml = l.BXlO_G psi'l (40)
B R

2
Gy
Thus,

(41)

olgn
n
>
&

-
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To find the third constant, use the special form of stress-strain
relations (20) for uniaxial constant compression, namely:

0= 26,(1 + v) & + 2G.(1 + v) T ¢ (42)

and solve for T4t

}_.I

To =3 [zerho»r vy {‘ (43)

By taking from the curve of figure 5 several pairs of values of € and
€ and by using the values of o and Gr Just given, an average Tg

value of 30 hours may be obtained. The stress o that causes failure
can now be determined as a function of the critical time (or lifetime).
To find the upper critical stress (Ucr)u = Fh/h, use formula (25) with

k = 4, the buckling value for a long, simply supported plate. Substitu-
tion of the numerical values ylelds

2

h .
(Ocr)h_= 23.5 ;§X106 psi (44)

The ratio of this critical upper value to the critical value corresponding
to a lifetime of, say, T 1s on the basis of the preceding theory the
same as the ratio of G(t)/G, &iven by equation (30). Figure 6 shows a

plot of the critical stress against lifetime for four thickness-to-width
ratios b/h of 20, 30, 45, and 60.

These purely theoretical lifetime curves can be compared with ex-
perimental results presented by Mathauser and Deveikis in reference 3,
which are also shown in figure 6. Even though the quantitative discrep-
ancy between the predicted and experimental results is in general fairly
large, the theory predicts more than merely an order of magnitude and
exhibits the proper dependence on time and on thickness-to-width ratio.

Because of the scarcity of information on material properties of
aluminum alloys subjected to compression at higk temperatures and in-
formation on creep lifetime of plates, this first numerical comparison
of theoretical and experimental results can be regarded as satisfactory
and promising.

Performing the comparison on a wider scale did not appear possible,
because only for the 2024-T3 aluminum-alloy plates at 450° F were, to
the authors' knowledge, both material constants and creep lifetimes of
plates in compression determined experimentally.
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CONCLUDING REMARKS

In conclusion, it should be emphasized that the present report con-
tains a highly simplified and idealized analysis, since the influence of
metallurgical changes, nonlinearities, time-dependent loads, and so forth,
were not taken into account.

However, the fact that creep analysis is bound to be a highly in-
exact endeavor should be noted. The large amount of scatter to be ex-
pected may be seen, for example, in reference 13, where it is shown that
varying the temperature +10° F every 7 minutes procduced creep rates six
times as large as those produced in a steady temperature test at 1800° F.
Further, a 15-percent stress variation may change a column lifetime by a
factor of 10.

Thus it follows that, from a practical point of view, all that can
be expected from a creep analysis is merely an order of magnitude.
Precisely for this reason, any attempt to refine the approach by including
various effects has to be considered with caution.

Columbia University,
New York, N. Y., March 17, 1957
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